.1 Property Testing

نویسنده

  • Sourav Chakraborty
چکیده

My field of research is Theoretical Computer Science. My focus has been in the classical and quantum complexity of Boolean functions (including property testing, sensitivity and block sensitivity of Boolean functions and quantum database search), in electronic commerce, in graph algorithms and in coding theory. I have designed effective algorithms as well as proved lower bounds for the complexity of problems in this area.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CS 369 E : Communication Complexity ( for Algorithm Designers ) Lecture # 9 : Lower Bounds in Property Testing ∗

We first give a brief introduction to the field of property testing. Section 3 gives upper bounds for the canonical property of “monotonicity testing,” and Section 4 shows how to derive property testing lower bounds from communication complexity lower bounds. We won’t need to develop any new communication complexity; our existing toolbox (specifically, Disjointness) is already rich enough to de...

متن کامل

CS 369 E : Communication Complexity ( for Algorithm Designers ) Lecture # 8 : Lower Bounds in Property Testing ∗

We begin in this section with a brief introduction to the field of property testing. Section 2 explains the famous example of “linearity testing.” Section 3 gives upper bounds for the canonical problem of “monotonicity testing,” and Section 4 shows how to derive property testing lower bounds from communication complexity lower bounds. These lower bounds will follow from our existing communicati...

متن کامل

2 TESTING MONOTONICITY : O ( n ) UPPER BOUND

1 Overview 1.1 Last time • Proper learning for P implies property testing of P (generic, but quite inefficient) • Testing linearity (over GF[2]), i.e. P = {all parities}: (optimal) O 1-query 1-sided non-adaptive tester. • Testing monotonicity (P = {all monotone functions}: an efficient O n-query 1-sided non-adaptive tester.

متن کامل

Property Testing and Combinatorial Approximation

1 1 General introduction 3 1.1 Combinatorial property testing . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Property testing in the dense graph (and hypergraph) model . . . . 4 1.1.2 Testing graph properties in other models . . . . . . . . . . . . . . . 5 1.1.3 Testing massively parameterized properties . . . . . . . . . . . . . . 5 1.2 Probabilistically checkable proofs of proximit...

متن کامل

2 Proof Sketch for Szemerédi Regularity

• Generalization of bipartiteness testing: " general graph partition properties " (GGPT) • Testing-freeness via regularity: – Szemerédi Regularity Lemma (SRL) –-removal lemma (tester with query complexity O (1), with the dependence on is a tower of 1.2 Today • Quick sketch of the proof of SRL • 1 Ω(log 1) lower bound for 1-sided error testers for-freeness (ruling out poly(1)-query testers) • Bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009